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Abstract. For reasons of calculational simplicity, a massive spin-one field, interacting with 
external potentials, is described in terms of the Stuckelberg formalism. Some points, con- 
cerning necessary and sufficient conditions for the classical theory to be causal, in the sense 
of Velo and Zwanziger, are clarified. It is then shown that with a simple restriction on the 
type of interaction considered, the classical theory is causal, in the above sense, if and only 
if the corresponding quantum theory is Lorentz invariant, in that the S operator in the 
interaction picture is normal independent. Incidental in this demonstration is the result 
that the characteristic and LeeYang determinants share the same form. 

It is indicated how this result generalizes to interactions between Stuckelberg, Klein- 
Gordon and electromagnetic fields; and the validity of the result, in the more usual vector 
formaiism is established. 

1. Introduction 

In an earlier paper (Jenkins 1973a), it was shown for a massive spin-one vector field 
in an external potential, the source being linear and non-derivative in the vector field, 
that the classical theory is causal, in the sense of Vel0 and Zwanziger (1969a, b, 1971), 
if and only if the corresponding quantum field theory, in which the lagrangian is sym- 
metrized in the vector field, is Lorentz invariant, in the sense that the S operator in the 
interaction picture is normal independent. 

Such a relationship, between the classical and quantum problems, is, in the light 
of thework of Capri (1969) (Schroer et al 1970), not especially surprising. For, in that 
work, it is shown, for linear non-derivative sources, that the latter problem is directly 
reducible to the former. However, some further particular examples, discussed by 
Jenkins (1973a), suggest that the above relationsbip, between causality and Lorentz 
invariance, is of greater generality. 

In the present paper, this relationship is shown to be valid for interactions which 
may depend, in any manner, on the vector field, its antisymmetric first derivatives and 
external potentials, provided only that this dependence is such that the lagrangian is 
quadratic in the time derivatives of the vector field, VJx), and its zeroth component, 

This purpose is effected by a use of the (equivalent) Stuckelberg formalism (Stuckel- 
berg 1938). The reason for this is that, in the Stuckelberg formalism, the field equations 
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are true equations of motion, a fact that will be seen to facilitate later calculations; 
whereas, in the vector formalism, the field equations contain and imply constraints, 
these being used to derive the true equations of motion (Velo and Zwanziger 1969a, b). 

The plan of the paper is as follows. In $ 2, a resume of the approach of Vel0 and 
Zwanziger (1969a, b, 1971) to the determinationofthecausal nature ofclassical relativistic 
field theories, is given. Some points in earlier work, concerning necessary and sufficient 
conditions for a causal theory, are clarified. In 9 3, the Lorentz invariance of quantum 
theories of the Stuckelberg field in external potentials is discussed in terms of the Lee- 
Yang theorem (Lee and Yang 1962) and later variants, which take into account the 
problems of operator ordering. Section 4 is devoted to a demonstration that the Lee- 
Yang determinant, of $3, is essentially the same as the characteristic determinant, of 
0 2, and the consequent relationship between causality and Lorentz invariance is 
established. The results are discussed in $ 5,  and there are two appendixes. In appendix 1 
the connection between the vector and Stuckelberg formalisms is discussed ; whilst in 
appendix 2, a lemma needed in $ 2 is proved. 

Throughout this paper, the metric used is g,, = diag(1, - 1, - 1, - l), 8, = a/axr 
and the usual summation convention for greek indices is adhered to. 

2. Causality 

Consider the following lagrangian density for a massive spin-one classical field in the 
Stuckelberg formalism (Stuckelberg 1938) 

a x )  = =z3(x) + g%x) (1) 

z0 (x )  = -3apA,(x)a”Av(x)+3m2A,(x)A’(x)+~d,8(x)a,e(x)-3m2e2(x) (2) 

where the free part is given by 

and the interaction is of the form 

Note that the major coupling constant g has been extracted from 91(x). The field 
equations which follow from (1) are 

the last equality following from the form (3) of Y1(x). Note that, as a consequence of 
(4), ( 5 )  and the form of (3), the following equation is satisfied: 

(a2 + m2)(PA, (x ) -  me(x)) = 0, 

a necessary condition for the equivalence of the Stuckelberg and usual vector formalisms. 
It is readily seen that (4) and ( 5 )  form a second-order system of partial differential 

equations, without constraints, and in which the second time derivatives of A,(x) and 
O(x) all appear. Thus (4) and ( 5 )  are true equations of motion. The causal nature of the 
propagation of the solution of such true equations of motion is determined by their 
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characteristic determinant (Velo and Zwanziger 1969a, b, 1971). On making the replace- 
ment 8, -, n, in the second-order derivative terms of (4) and (5 ) ,  their characteristic 
determinant, D(n), is calculated as the determinant of the coefficients of A,(x) and e(x) 
in those terms. 

The solutions, n,, of the equation D(n) = 0 give the normals to the characteristic 
cones corresponding to (4) and (5 ) .  If, for all such n,, no is real for any n, then the system 
of equations (4) and (5) is hyperbolic and propagation occurs; if otherwise, the solution 
of (4) and (5) does not propagate. It now remains to discuss the nature of the propagation 
in the former case. There are, a priori, three possibilities, which are discussed separately 
below. 

(i) At least one solution n, is timelike for some values of the major coupling constant. 
For these values of g, the corresponding characteristic cone lies outside the light cone. 
Thus propagation can occur across the light cone, and the theory given by (1) is then 
said to be acausal. Note that this definition of an acausal theory only requires that the 
propagation beacausal for some, not necessarily all, valuesofthe major coupling constant. 

(ii) All the solutions n, are null. In this case, the characteristic cones are all the light 
cone, across which propagation cannot occur; and hence the theory given by (1) is 
causal. 

(iii) At least one solution n, is spacelike for some values of the major coupling 
constant. This case, however, is contained in (i), a point which has been previously 
overlooked. For, as is shown in the lemma of appendix 2, in this case, there exist other 
values ofg for which a timelike solution exists. Hence the theory, given by (l), is acausal 
in the sense of the definition in (i). 

In the light of (i), (ii) and (iii), it follows that a classical theory is causal, in the sense 
of Vel0 and Zwanziger (1969a, b, 1971), if and only if all the solutions of D(n) = 0 are 
null. This is readily seen to be equivalent to D(n) having the form 

D(n) = (n2)5F ( 6 )  
where F is a Lorentz invariant functional of A,(x), e(x) and the external potentials. 

3. Lorentz invariance 

For the quantum field theory corresponding to the lagrangian density (l), the S operator 
in the interaction picture is given by 

S = Texp( - i /:m $(x) d4x) (7) 

where %,(x) is the interaction hamiltonian, in the interaction picture, which corresponds 
to U ( x ) .  Now, as is well known, the time-ordered product of two fields contains, in 
general, non-covariant terms. It is desirable to rewrite (7) in terms of an effective 
interaction hamiltonian density, i%?;"(x), which is to be used in conjunction with the 
T* product, this being obtained from the T product by discarding the non-covariant 
terms in the latter. In this way, all the effects, which could lead to a possible breakdown 
of the Lorentz invariance ofthe S operator, are lumped together in A?;"(x). The prescrip- 
tion for doing this is given by the Lee-Yang theorem (Lee and Yang 1962), and involves 
writing 
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where 

Jf;"(x) = -g{%(x)) + S x ( x ) + S 1 x ( x )  

with { ) denoting symmetrization, 6#(x) given by 
(9) 

9 being the determinant of the s mmetric matrix of the coefficients of the part of U ( x )  
quadratic in &doA,(x) and , / fa06(x),  and where 6 1 ~ ( x )  is a term, proportional to 
(S3(0))*, which arises from the symmetrization of Y;(x) .  

In their original paper, Lee and Yang (1962) neglected all problems concerned with 
operator ordering, and hence did neither effect the symmetrization nor include S ' X ( x )  
in (9). These modifications of the original discussion have been discussed recently by 
several authors including Dowker and Mayes (1971), Suzuki and Hattori (1972) and 
Kvitky and Mouton (1972). Charap (1973) is also a good source of references. In these 
discussions, it is noted that S1&'(x) cancels certain unwanted contributions from 
- g { Y I ( x ) } .  Hence the only term in which a breakdown of the Lorentz invariance of 
the S operator can occur is S J f ( x ) .  Thus the Lorentz invariance, or not, of the quantum 
theory corresponding to Y ( x ) ,  is wholly determined by the Lee-Yang determinant 9, 

Before proceeding, it should be noted that 9, calculated in the manner described 
above, is given in a frame of reference, in which quantization is on a flat spacelike 
surface with unit normal qp = (1 ,  0, 0,O). The result can be generalized to an arbitrary 
spacelike surface, with unit normal q,, by the appropriate insertion of q p  into 9, giving 
9(q ) .  If 9 ( q )  is independent of q, the S operator is Lorentz invariant. If further 
B I J f ( x )  = 0 and 9 ( q )  = 1, whence S%'(x) = 0, the generalized Matthews' rule is said 
to hold (Matthews 1949, Takahashi 1969). However, if 9 ( q )  is explicitly dependent on 
qp,  then the S operator is not Lorentz invariant. 

On noting that q p  is a unit vector, ie r2  = 1, it follows that the quantum field theory 
corresponding to Y ( x )  is Lorentz invariant, in the sense that the S operator is Lorentz 
invariant, if and only if 9 ( q )  has the form 

Wrt) = ( q 2 I 5 9  (1  1) 
where 9 is a Lorentz invariant functional of A,(x), 6(x) and the external potentials. 

Finally, it should be noted that, for the applicability of the Lee-Yang theorem, it is 
necessary that Y ( x )  be quadratic in the time derivatives of A,(x) and Wx), a restriction 
which will be assumed satisfied throughout the remainder of this paper. 

4. Causality and Lorentz invariance 

In this section, the connection between causality and Lorentz invariance is established 
by demonstrating that D(n) and 9 ( q )  have the same form. To this end, the expression 
for Y ( x )  is firstly made more explicit. The most general expression, satisfying the 
requirements (l), (2), (3) and the restriction stated at the end of 0 3, may be. written in 
the following form: 

Y ( x )  = Y O ( X ) + ~ A k j ( a k A O ( X ) - a O A k ( X ) ) ( a j A O ( X ) -  aOAj(x)) 
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where Akj, B,, C depend only on AR(x) + m- 'ak8(x), akA,(x)-djAk(x) and the external 
potentials, whilst, in addition to this dependence, D depends linearly on A,(x) + m- 'ao8(x) 
and akAO(X)- a0Ak(x), and where repeated latin indices are assumed summed over the 
values 1,2,3. The lack of manifest Lorentz invariance in (12) will be convenient for later 
calculations. 

The field equations (3) and (4) may now be written in the form 

-a:Ao(x) = fo (13) 

Bk 2 C 
= - ,a;e(x)+-aoAk(x)+h m m 

wheref,,f, and h depend on A,(x), O(x), the first and second space derivatives and the 
first time derivatives of these fields and the external potentials. With the field equations 
written in the above form, it is easy to read off the characteristic determinant in a frame 
in which n,  = (no, 0, 0,O) and the result is 

l o  C 
m m I+, Bk -_ 

Next, the Lee-Yang determinant, Q(q), is read off from (12). On remembering that 
q2 = 1, it is, in a frame in which q, = (1,0,0,0), readily seen to be 

w?) = D ( d  
with D(q) given by (16). Thus the connection between the characteristic and Lee-Yang 
determinants is established. 

On account of this result, and the necessary and sufficient conditions for the causality 
and Lorentz invariance of the classical and quantum theories of the Stuckelberg field, 
discussed in §§ 2 and 3, respectively, it follows that a classical theory of the Stuckelberg 
field interacting with external potentials is causal, in the sense of Vel0 and Zwanziger 
(1969a, b, 1971), if and only if the corresponding quantum field theory is Lorentz 
invariant, in that the S operator in the interaction picture is normal independent; 
provided only that the interaction is of the form (3) and satisfies the restriction of being 
quadratic in the time derivatives of the Stuckelberg field components. 

5. Discussion 

In their work on acausal propagation, Vel0 and Zwanziger (1971) remark that, for 
causal behaviour, the characteristic cone must lie inside or on the light cone, whilst 
acausal behaviour will occur if it lies outside the light cone. In the light of the results 
of§ 2 and appendix 2, this remark must, for the Stuckelberg field interacting with external 
potentials, be clarified. For then the former case above, contains the possibility (iii), 
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which involves the occurrence of acausal propagation for some values of the major 
coupling constant. Thus it is perhaps more illuminating to say that a theory of the 
Stuckelberg field interacting with external potentials is satisfactory, from the standpoint 
of causal propagation, if and only if the characteristic cones are all the light cone. 
This view is consistent with a remark of Schroer er a1 (1970), concerning the particular 
case of sources linear in the field, when the quantum problem is directly reducible to 
the classical problem (Capri 1969). They remark that, if the characteristic cone lies 
inside the light cone, then in the quantum theory, the field commutation relations vanish 
outside a cone contained in the light cone, and that this result is not consistent with the 
conventional concept of microcausality. 

The main result of this paper is that stated in the last paragraph of the previous 
section, for the Stuckelberg field interacting with external potentials?. It should be 
noted that the essential property of the Stuckelberg formalism, which allowed such a 
simple derivation of this result, is that of the field equations being true equations of 
motion. This being so, it is easy to see that the arguments of this paper may be readily 
extended to include, for example, interaction between Stuckelberg, Klein-Gordon and 
electromagnetic fields, and external potentials. In this more general case, the relationship 
between causality and Lorentz invariance remains valid, provided that the gauge- 
invariant lagrangian density is quadratic in the time derivatives of all the fields, and 
that its interaction part has the form 

with O(x) the Klein-Gordon field, and d y ( x )  and Fas(x) the electromagnetic potential 
and field-strength tensor, respectively. It should be noted that, incidental in the main 
result and its above generalization, is the result that the characteristic and Lee-Yang 
determinants share the same form. 

Although the Stuckelberg formalism has been used throughout this paper, the results 
are also valid in the more usual vector formalism. The connection between these 
formalisms and the relation between the above results therein are discussed in appendix 1. 
However, one point is worth noting here, and that is that the restriction of the depen- 
dence of Y(x )  to being quadratic in the time derivatives of the field components, in the 
Stuckelberg formalism, becomes, in the vector formalism, a restriction of Y1(x) to being 
quadratic in V,(x) and i?,V,(x)-13,V,(x). 

Finally, it is remarked that the above generalization of the result of this paper is 
consistent with the conclusions of Jenkins (1973b), concerning both the electromagnetic 
interaction of a massive spin-one vector field with arbitrary magnetic dipole moment 
and the massive Yang-Mills field. 

t Recently, Mathews and Seetharaman (1973) have discussed further the causal nature of the theory of a 
massive spin-one vector field in a constant, uniform antisymmetric second-rank tensor external potential. 
Although the characteristic cones are all the light cone (Velo and Zwanziger 1969b), Mathews and Seetharaman 
find that the field equations possess a tachyonic solution, and consequently claim, contrary to the result of 
Vel0 and Zwanziger (1969b), that the theory is acausal. In this example, there can be no acceleration across 
the light cone; hence any acausality must appear as an inherent acausality in the nature of tachyons. However, 
whether or not there is any inherent acausality in the nature of tachyons is a problem, as yet unresolved, 
although the latter view seems more popular at present. In the light of these remarks, it must be emphasized 
that the main result of the present paper involves causality in the sense of Velo and Zwanziger (1969a, b, 19711, 
and that such a simple result would not hold if causality were defined following Mathews and Seetharaman 
(1973). 
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Appendix 1 

Consider the following lagrangian density for a massive spin-one vector field interacting 
with external potentials: 

Y(  X )  = - $(a, v,( x )  - a ,  v,(x)) (a ,  v V ( x )  - av vy x ) )  + fm’ v,( X )  V ~ X )  

+gY,( V,(x), a,V,(x) - a,V,(x), external potentials). (A.1) 

The field equations are 

with Lo = 0 being a primary constraint. 
The Stuckelberg split (Stuckelberg 1938) of the field V,(x) is effected by writing 

with A,(x) and O(x) being unique up to a gauge transformation, 
1 
m ’ q x )  .+ A,(x)+-- ,A(x)  

.+ e w  - 

v = apAA,-me = o 
with A ( x )  satisfying the Klein-Gordon equation, and subject to the constraints 

(A.4) 
and Lo = 0, with VJx) written as in (A.3). These constraints and the gauge invariance 
suffice to reduce the number of independent field components from five to the required 
three. The gauge-invariant lagrangian density, in the Stuckelberg formalism, corre- 
sponding to (A.1) is then just (1); whilst the consequent field equations are (4) and (5). 
These field equations are supplemented by the constraints Lo = 0 and V = 0, assumed 
valid at t = 0. For consistency, (4) and (5) must preserve these constraints in time. 

To see this, firstly note that, on using (A.3) in (A.2), (4) may be rewritten as 

L , + a , , v  = 0. (A.5) 
Now, since Lo = V = 0 at t = 0 and, as follows from (A.2) and (A.4), a”,, = m’V, 

it follows that a,% = 0 at t = 0 and that V satisfies the Klein-Gordon equation. So, 
since %‘ = do% = 0 at t = 0 and V satisfies the Klein-Gordon equation, it follows that 
% is identically zero, whence Lo is also identically zero, from (AS). QED. Note further 
that L, = 0 is also a consequence of the argument of this paragraph. Thus the field 
equations (4) and (5),  supplemented by the constraints Lo = V = 0 at t = 0, are equiva- 
lent to (A.2). 

From this it is concluded that the above theory of a massive spin-one vector field 
in external potentials is causal, in the sense of Vel0 and Zwanziger, if and only if the 
above theory in the Stuckelberg formalism is. 

Finally, it is interesting to note the connection between the Lee-Yang determinants 
in these two theories. Noting that, in the vector formalism, the Lee-Yang determinant 
is the determinant of the symmetric matrix of the coefficients of the terms, in U ( x ) ,  
quadratic in , , /$(aoV,(x)-~,Vo(x))  and ,,/$.tVo(x), and using (A.l), (A.3), (12) and (16) 
it is readily seen that it is given by 9 ( q ) / -  q’. 
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Thus the above quantum theory in the Stuckelberg formalism is Lorentz invariant 
if and only if the corresponding theory in the vector formalism is. 

Appendix 2 

Lemma : If, for the Stuckelberg field in external potentials, the characteristic determinant, 
D(n),  has a spacelike root for some values of the major coupling constant, then there are 
other values for which it has a timelike root. 

Proof: The characteristic determinant may be written in the form 

with apv, pp,  yy, 6 depending on nr ,  the field and external potentials, and all being propor- 
tional to g. Expanding D(n) as the determinant of the sum of two matrices gives the 
following form: 

5 

D(n) = ur(n2)’ 
r = O  

with U ,  dependent on arv ,  pa, yy, 6 in such a way that changing the sign of g sends U, 

into ( -  1)5-rur .  
Now if n2 = f(a,), say, gives (implicitly, since a, depends in general on np)  a spacelike 

root of D(n), for some value of g, then, since changing the sign of g sends D(n) into 

r = O  

it follows that - n2 = f (a r )  gives a timelike root of D(n), for the value of g with opposite 
sign. QED. 
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